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A method is described for the numerical calculation of Fourier transforms in variables 
that are the logarithms of the original variable and transform variable. The method in- 
volves only the application of two successive Fourier transforms and can also be applied 
to Bessel and spherical Bessel transforms. Numerical examples show that the method 
gives very accurate results up to large values of the transform variable. 

1. INTRODUCTION 

The purpose of this article is to describe a technique for calculating Fourier sine or 
cosine transforms, or Fourier-Bessel transforms, that may be very useful and con- 
venient in many situations. 

The basis of the method is the use of variables that are the logarithms of the original 
and transform variables. These variables are particularly appropriate in atomic 
physics calculations because for atoms of moderately large Z there are considerably 
different length scales in the problem. The length scale appropriate to the inner 
electrons is aO/Z, where a, is the Bohr radius, whereas the length scale appropriate 
to the outer electrons is a,, . Similarly, in the transform variables, the wave number 
scales are Z/a0 and l/a0 respectively. 

The problem then arises in carrying out a numerical integration that, if a small 
mesh suitable for the inner electrons is chosen, a prohibitively large number of points 
may be required for the outer electrons. For example, for Z = 10, choices of dr = 
0.01 (r being the original variable) and rrnsx = 5, might be appropriate. Similarly, in 
k (the transform variable) choices of dk = 0.2 and k,,, = 100 might be reasonable. 
It is seen that to use the same mesh for all the electrons, a prohibitively large number of 
operations (~500~) is required to calculate a single transform. This problem can be 
avoided by the use of logarithmic variables for which rlr and dk increase linearly 
with r and k. For an example of such a calculation, for which logarithmic variables 
are appropriate we refer to a discussion by Green and Garvey [l] on atomic form 
factors. 
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Although these considerations from atomic physics led to the development of the 
method, it should be of value in calculations in which frequent calculations of Fourier 
or Bessel transforms are required at many values (as contrasted to a single value) 
of the transform variable. In particular, the method uses two successive calculations 
of Fourier transforms. The fast Fourier transform technique [2] (FFT) can then be 
applied so that the computing time is proportional to N In N rather than N2. Further- 
more, no calculations of Bessel functions are required for Bessel transforms. 

The method will be described in Section 2. The results of some calculations of 
spherical Bessel transforms will be given in Section 3 and in Section 4 the method 
will be compared with other methods of doing related problems. 

The use of logarithmic variables in transforms in which the kernel is a function of 
the product of the two variables has been proposed previously by Gardner, et al. [3] 
in a related context to solve the problem of decomposing a function that is a linear 
combination of decreasing exponentials. The Gardner method has been elaborated 
by Schlesinger [4], and Smith and Cohn-Sfetcu [5], and has been generalized to the 
problem of analyzing multicomponent signals by Cohn-Sfetcu, et al. [6, 71. After 
this article was submitted for publication, the author received a preprint by Siegman 
[S] in which the application to the calculation of Bessel transforms (Eq. (18)) has 
been outlined. 

2. METHOD 

We are interested in integrals of the form 

g(k) = 1% f(r) sin kr dr. 
0 

(1) 

It will be assumed that f(r) -+ 0 at least linearly as r + 0 as is usually the case in 
practice. We put r = eP, k = ee, ,j(~) = g(e$ f(p) = f(eD). Then Eq. (2.1) is 

i?(K) = j--l sin(eK+o) p(p) eo dp. (2) 

It is seen that Eq. (2) is a convolution type integral and it is therefore natural to 
calculate it by Fourier transforms. To this end, we put 

(34 

(3b) 

enj2 sin(eP) = 1” eitDM(t) dt, 
--X2 

(44 

e-itDe~/2 sin(eo) dp. W) 
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It is then readily found that 

&) = 2?7e-42 
I -1 eiKt#(t) M(t) dt. (5) 

Therefore, it is seen that to calculate g(~), it is necessary only to l&d the Fourier 
transform of e@&)), multiply it by M(t), and transform back. 

It is noticed that ep has been factored betweenf@) and sin(e0). This factorization is 
convenient, in that it turns out that M(t) has constant modulus, but not essential 
for the method. 

The function M(t) is given by 

M(t) = & lrn r-i/2-it sin r dr 

= & q1/2 - it) sin 5 (l/2 - it) 

= --!- r(lj2 - it) [cash ($) - i sinh ($1. 2312 -2r (6) 

Since [9] 

1 J’(1/2 - it)/” = r/cash nt, 

M(t) has constant modulus, and is given by 

&f(t) = (&.p p4, (7) 

where 

tD2(t) = tan-l(tanh(nt/2)) (8) 

and G+(t) is the argument of r(l/2 - it). The latter is readily calculated by expressing 
r(1/2 - it) in terms of Z+ + l/2 - it) and using the known asymptotic behavior 
of the r function [9]. The result is 

t&(t) = Im[ln P(l/2 - it)] 

=lii i tan-1(2m2fl)-tlnr+t-+4 
! rn=l 

+ 
sin q5 sin(3 (6) --- 
12r 3609 

where 

(9 

q5 = tan-l[2t/(2n + I)], r = [(n + *)” + taJ112, 
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The choice of IZ is dictated only by the requirement that the asymptotic expansion of 
the p function be valid. It was found that choosing n = 10, and retaining the terms 
given in (9), gave results for al(t) correct to ten decimal places. Greater accuracy 
could be readily obtained by using double-precision arithmetic and retaining the 
next few terms in the asymptotic expansion. 

We note that if f(r) is real, Eq. (5) can be written 

J(K) = 4ne-r/2 Re s 
w eiKtb(t) M(t) dt. 

--m 
(10) 

Further, if a cosine transform is required, it is obtained by changing the sign of 
sinh(rt/2) in (6) or replacing CD, by -CD, . 

Integrals of the form 

g,(k) = j z j,(k) fcr) r2 dr 
0 

(11) 

are also frequently required. There is a certain degree of arbitrariness in performing 
the integral since various powers of r can be factored out ofj,(kr). It is convenient 
for this reason to write the integral as 

g,(k) = tW1 jam (kr)l-mjz(kr) r”+‘f(r) dr, (12) 

where m = 0, l,..., 1. 
Proceeding as before, we find that 

&(K) = 2,j-e(m-3/2)K 
s 

m eiKtMl,,(t) +dt) dt, 
-G 

where 

&(t) = & 1-1 eitpe’m+3J2)~(ep) dp, (14) 

Mt.&> = & j--L, ,-it0~(3/2-mbj~(~~) dp 

1 m =- s 277- 0 rl/‘J-“-iv,(r) dr. 
This integral can be evaluated by using identities for spherical Bessel functions, and 
it is found that 

M,,,(t) = (&~-l/~ fi (j - 4 - it) i (2j - I+ m - 4 i- it)-l 
i=l j=l 

X [COS ($?I) ei(41-422) + sin (IfIj e’(41+4S)], (17) 

where p = I - m and Qi, and QT, are given in Eqs. (8) and (9). 
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Bessel transforms of the form 

can also be calculated by the above methods. Proceeding as before, we find 

g,(~) = 27~+-~)~ j-1 eiKtQ,,,(t) &tt) 4 (19) 

where 

&(t) = & 1-1 eitpe(l+u)pf(ep) dp, (20) 

en,@(t) = & J-1 e-itPe(l-“)pJn(eP) dp, (21) 

and p is an arbitrary number such that -Q < p < n + 1. The integral in Eq. (21) 
can be calculated as [9] 

= & 2-u-d F((n - p - it + 1)/2) 
r((n + p + it + 1)/2) ’ (22) 

If n is a nonnegative integer, and t.~ has been chosen so that n - /* is even, this can be 
written 

Q,Jt) = & 2-it 
(n - p - 1 - it)@ - /J - 3 - it) ... (1 - ir) 
(n + p - 1 + it)(n + p - 3 + it) *** (1 + it) 

r((1 - it)/2) 
x T((l + it)/2) * (23) 

The factor F((l - it)/2)/I’((l + it)/2) h as unit modulus, and its phase is given by 
2 @,(f/2) where !De is given in Eq. (9). 

In certain calculations the integral 

(24) 

may be required. This can be calculated using Eqs. (ll)-(15) for spherical Bessel 
transforms, provided MI,,(t) is replaced by 

Ml,,(t, A) = & SW rl~z-m-i”jL(r)j,(Xr) dr, 
0 

(25) 

where h = k’jk. It can be assumed that A < 1. 
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The integral in Eq. (25) is a Weber-Schafheitlin integral and can be written as 

M~,,(~, A) = (4~1/22~)-l r(z + l - Y/2) 
w/2 + Y/4 

(1 - h2p--1)‘* P$I$ll” g-g,, 

where y = m + Q + it. It can then be verified that the ML,,, satisfy the following 
recurrence relation in I: 

421 - Y) Ml-l,,, - (21t 1)(1 + A21 it,,,, + A(21 + 2 + Y) M,,,,, = 0. (26) 

The values of Ml,m(t, X) can be calculated for arbitrary I by combining Eq. (26) with 
the special cases [9] 

MO,& A) = (47&J-’ r(1 - v) cos(nJ7/2)[(1 + X)y - (1 - h)V], (27) 

&,,(t, A) = -(47i+y Ql - v) COS(77~/2)[(1 + h)r + (1 - X)*1. (28) 

The function 

T(l - y) cos(ny/2) = T(-m + * - it) sin[(7r/2)(m + it)]/21i2 (29) 

can be readily expressed in terms of Ql(t) and Q2(t) in Eqs. (8) and (9). 

3. NUMERICAL EXAMPLES 

The method that has been described seems to be sufficiently complicated mathe- 
matically that it is difficult to give a detailed error analysis of it. It has therefore been 
applied to some specific examples to try to understand the best way to implement it. 

The problem is essentially to calculate the two Fourier transforms. It is necessary 
to choose an integration scheme, and parameters dp, N, , dt, Nt which describe the 
meshes in the p and t integrations. The use of the FFT appears to be so attractive that 
methods assuming uniform meshes in p and t have been considered primarily. If the 
FFT is used, the mesh parameters are constrained by N, = Nt = N and dp dt = 
&r/N. Also AK = Ap and N, = N, . The Fourier transforms may then also be calcu- 
lated at extraneous large and small values of K that are of no practical interest, and 
for which the results are inaccurate. 

Preliminary calculations were made for f(r) = e-r using the trapezoidal rule, 
Simpson’s rule, and Filon’s method to carry out the numerical integrations of Eqs. 
(3b) and (5). Another method [lo] that has been tried is to expand the given function 
in a Chebyshev series and sum the Fourier transforms of each term in the series. In 
the example considered the trapezoidal rule yielded the most accurate results so it was 
used in further calculations. It may be noted that for the integrals being considered, 
which essentially vanish at the end points, the trapezoidal rule is a fourth-order 
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method. The Chebyshev expansion method, using 41 data points, was found to be 
less accurate than the trapezoidal rule using 65 data points, and failed altogether 
using 65 data points in single-precision arithmetic. This method therefore seems to be 
not too useful for the present calculation, although it is probably feasible to subdivide 
the entire interval and use a lower-order version of the method on the subintervals. 

It was found empirically that a ratio AtlAp - 2 seemed to give the most accurate 
results in the case considered. 

The transform d(t), when calculated numerically by the trapezoidal rule, satisfies 
the identity $(T - t) = r&t)* where T = Ndt = 2rr/dp. This implies that the values 
of b(t) for t > T/2 must be spurious and therefore the t integration was cut off at 
t = T/2. The integration in Eq. (5) is then over the Nyquist interval (-T/2, T/2). 

The calculations described were made on a computer with a 14 decimal digit word 
length. 

The method has been applied to calculate the spherical Bessel transforms of Eq. (11) 
for the function 

f(r) = e+ (30) 

for various I values. For 1 = 0, this reduces to the sine transform of r eeT. 
The analytic results have been calculated as follows. If we define 

it can be shown that 

(31) 

21 
I -- Z.Zfl - 1 + 22 4-LZ 7 

(I - m)(Z + in + 1) ’ 

These identities, together with 

I,*0 = tan-‘(l/Z), IO.1 = (1 + ZS)-’ 

permit the recursive calculation of 1l,1 and 1,,,+, , and hence of IL,z . The desired result 
is then k31rS2(2/k). 

The results for 2 = 0 are shown in Table 1. In one case the calculation was done 
with N = 64, dp = 0.2, -10 < p < 2.6. Then At w 0.5 and tmax w 16. The results 
were calculated for -3 < K < 9.6, AK = 0.2, but are invalid for K > 4. It is seen 
that the results are valid to 5 or 6 significant figures for K < 0 and to 6 or better 
decimal places for K > 0. The calculation was repeated with N = 256, dp = 0.1, 
- 18 < p < 7.5. Then dt = 0.25 and tmsx = 32. The results were calculated for 
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TABLE I 

Spherical Bessel Transforms of e? with I = 0, Showing the Analytic Results, and the 
Results for Two Numerical Calculations 

K k Analytic 

N=64 
Ap -= 0.2 

Pmin = -10 

N = 256 
Ap = 0.1 

Pmin = -18 

-3 0.0498 1.990121735 

-2 0.1353 1.928702168 

-1 0.3679 1.551606985 

0 1.0 0.5 

1 2.7183 (-2)2.841867324 

2 7.3891 (-4)6.470074976 

3 20.086 (-5)1.222773055 

4 54.598 (-7)2.249194200 

5 148.41 (-9)4.12193297 

6 403.43 (-11)7.5501763 

1.990068 

1.928672 

1.5516106 

0.5OOOOO72 

(-2)2.8418736 

(-4)6.470077 

(-5)1.22380 

(-7)2.341 

(-8)1.33 

(-9)9.26 

1.990121735 

1.928702168 

1.551606985 

0.5000000000 

(-2)2.841867324 

(-4)6.470074975 

(-5)1.222773055 

(-7)2.249194200 

(-9)4.12193301 

(-11)7.5501805 

TABLE 11 

Spherical Bessel Transforms of e-’ with I = 10 in the Same Cases as Table 1 

K Analytic 

N=64 
Ap = 0.2 

Pmin = -10 

N = 256 
Ap = 0.1 

Pmin = -18 

-2 (-11)6.6825 

-1 (-7)9.5245197 

0 (-3)1.933805884 

I (-2)4.379309023 

2 (-2)2.559147429 

3 (-3)3.129977969 

4 (-4)2.161750217 

5 (-5)1.213305819 

6 (-7)6.312462077 

(-5)7.51 

(-6)5.882 

(-3)1.9364 

(-2)4.3793135 

(-2)2.559146481 

(-3)3.129979318 

(-4)2.161749257 

(-5)1.213303907 

(-7)6.31256 

(--11)6.7203 

(-7)9.5245214 

(-3)1.933805886 

(-2)4.379309023 

(-2)2.559147429 

(-3)3.129977969 

(-4)2.161750217 

(-5)1.213305819 

(-7)6.312462077 

-7 < K < 18.5 but are shown only for -3 < K < 6. It is seen that they are valid 
to 10 significant figures for K < 0 and better than 10 decimal places for K > 0. 

The results of the same calculations in the case I = IO are shown in Table II. It is 
seen that they are again accurate to about 6 and 10 decimal places, respectively, with 
the accuracy improving for large K. The relative inaccuracy at small K is not too 
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TABLE III 

Spherical Bessel Transform of e-’ with I = 10, Calculated with m = 10 

K Analytic 

N = 64 
Ap = 0.2 

Pmin = -J 

N = 256 
Ap = 0.1 

Pmin = --7 

-3 C-15)3.228247340 (- 15)3.2282466 (- 15)3.228247340 
-2 (-11)6.682441388 (-11)6.682441833 (-11)6.682441389 
-I (--7)9.524519666 (-7)9.52451957 (-7)9.5U519666 

0 (-3)1.933805884 (-3)1.933806187 (-3)1.933805884 

1 (-2)4.379309023 (-2)4.37958 (-2)4.379309015 

2 (-2)2.559147429 0.10513 (-2)2.559147098 

troublesome since if one were interested in extreme accuracy for K < 0 one would 
use a more standard quadrature rule because the slow oscillation of the integrand 
would cause no difficulty. The accuracy at small K can be improved, however, at the 
expense of the results for large K, by choosing a larger value of m to perform the 
calculation. The results of such a calculation, with I = m = 10 are given in Table III. 
It is seen that for K < 0, the results of the two calculations are accurate to better 
than 8 and 12 decimal places, respectively. 

The reason for the dependency of the accuracy on the choice of m is clearly the 
factor erllK in Eq. (13). In order to obtain high accuracy, emK should be small so that the 
integral in (13) is large; this is achieved with m = I for K < 0 and m = 0 for K > 0. 

The method was also applied to the spherical Bessel transform of 

f(r) = (1 + 9-l 

TABLE IV 

Spherical Bessel Transform of (1 + ?)-I, 
I = 0, Calculated with Ap = 0.1, N = 256, pmin = -7 

K 

-3 

-2 

-1 

0 

1 

2 

3 

Analytic 

30.0179530 
10.1375609 

2.9556047 

0.57786367 

(-2)3.8132089 

(-4)1.31373 

(-10)1.48 

Numerical 

30.0179596 
10.1375633 

2.9556054 

0.57786385 

(-2)3.8132129 

(-4)1.31382 

(-9)3.41 
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in the case I = 0. The result in this case is 

g(k) = rr/2 esL/k. (33) 

This is a difficult case because of the very slow decrease of the integrand (-y-l) at 
large r. Because of the necessity of maintaining a large range in p, the calculation was 
only done for dp = 0.1, N = 256, Pmin = -7. The results are given in Table IV and 
are seen to be accurate to only about 7 decimal places for K > 0 and 7 significant 
figures for K -=c 0. If one were confronted with this difficult long-range behavior in 
practice, however, one would try to extract the long-range part and perform the 
integration analytically. 

Another example that has been considered is the spherical Bessel transform of 

f(r) = (1 + ry (34) 

in the case 1 = 0. In this case the result is given by 

g(k) = (7~/I 6)(1 + y) eQJ. (35) 

The results are given in Table V and are seen to be accurate to at least 10 decimal 
places in the more accurate calculation. 

TABLE V 

Spherical Bessel transform of (1 + rl)--s for 1 = 0 

K Analytic 

N=64 
Ap = 0.2 

Pmin = -10 

N = 256 
Ap = 0.1 

/Jmfn = --18 

-3 0.1961141183 0.196036 0.1961141183 

-2 0.1947056966 0.194684 0.1947056966 

-1 0.1859129752 0.185912595 0.1859129752 

0 0.1444659187 0.14446637 0.1444659187 

1 (-2)4.817673854 (-2)4.8176766 (-2)4.817673854 

2 (-3)1.017927151 (-3)1.0179235 (-3)1.017927151 

3 (-9)7.833876174 (-9)9.2879 (-9)7.8338745 

In general, the choice of intervals for the p and t integrations and the choice of dp 
and At must be dictated by the particular problem. One must choose pmin and pmax 
so that the p integrand is acceptably small at the ends of the interval. This will approach 
zero very rapidly as p --f 0~) unless f(r) is of very long range, e.g., f(r) N r-l, and the 
choice of pm= need present no difficulty. The choice of pmin may give a slight problem 
in the case f(0) # 0. In this case, it may be desirable to subtract a function whose 
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transform is known, e.g., f(0) e-ar, to improve the rate at which the integrand 
approaches zero as p -+ - 00. 

The choice of Ap is dictated, qualitatively, by the “smoothness” of f(r) with an 
ill-behaved function requiring a small Ap. The FFT is most effectively implemented if 
Ap = (pm, - ~,i,)/2~, however. 

The Nyquist interval (-T/2, T/2), T = 24Ap, dictated by the use of the FFT is 
natural since the asymptotic behavior of r+&(t) in Eqs. (3b), (14), and (20) is also 
governed by the smoothness off(r); iff( r is well behaved dp is not required to be too ) 
small, and T = 27r/Ap need not be too large. 

The choice of At in the t integration is dictated by the ‘bandwidth’ of the result 
g(~); the FFT choice of At = 27~/(NAP) corresponds tof(p) and J(K) having the same 
bandwidth. This is not unreasonable since K and p are dimensionless variables, and it 
is also suggested by the convolution integral in Eq. (2). 

4. DISCUSSION 

It is envisaged that the methods described in this articIe will be of considerable value 
in calculations in which large numbers of Fourier sine or cosine transforms, or Bessel, 
or spherical Bessel transforms are required for functions given either analytically or 
in tabular form. The latter possibility is important because other techniques, to be 
discussed, require analytic expressions for f(r) or the values of f(r) at special points. 
The method can therefore be applied if, for example,f(r) is the numerical solution of a 
differential or integral equation. 

It may be objected that the method assumes the evaluation of the function at the 
data points uniform in In r rather than r. However, in many calculations, it can be 
arranged to use p = In r as the variable throughout, and indeed, in many calculations, 
e.g., atomic structure calculations [I I], p and K are the natural variables to use. 

In a large scale calculation it may be assumed that all the auxiliary quantities, i.e., 
trigonometric functions and Ql(t), d&(t), are calculated and stored initially. The 
calculation of a transform is then reduced to the calculation of two Fourier transforms 
which may be carried out by FFT and require computing time proportional to N In N. 
There are also complex multiplications to be carried out that are proportional to N in 
number. This is comparable to the time that would be required by Filon’s method, 
which could also be reduced to two applications of the FFT, one at the even, and one 
at the odd data points. 

The principal difficulties in dealing with integrals such as those in Eqs. (I), (1 I), and 
(18) arise at large values of k for which the integrand oscillates rapidly and large 
cancellations occur. (As has been remarked, for small k the integral can be dealt with 
readily by classical methods.) A study of techniques for dealing with such integrals 
has recently been made by Blakemore, et al. [12] (to be referred to as BEH), who 
conclude that the optimum scheme is the partition-extrapolation method. In this 
method the integration is performed over successive half-cycles of the integrand 
using Gaussian integration for a trigonometric weight function and the resulting 
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integrals are summed using a technique for accelerating the convergence (e-algorithm). 
Three of the examples (1, , I3 , Ig) considered by BEH correspond to the examples 
considered here. The number of function evaluations required to obtain 9 figure 
accuracy in the result have been ascertained by BEH and been found to range from 
about 40 for e-* to about 70 for (1 + r2)-3. This seems to be much better than the 64 
function evaluations to obtain about 6 decimal accuracy and 256 evaluations to obtain 
about 10 decimal accuracy in the present scheme. The partition-extrapolation method 
suffers the drawback, however, that the points at which the function f(r) is to be 
evaluated depend on the value of k and seems therefore not to be suitable if the func- 
tion is given in tabular form or if the transform is required at many k values. The 
method also seems to be most directly applicable to trigonometric integrals for which 
the zeros of the integrand are immediately available. Another scheme considered by 
BEH, the Chebyshev expansion method [lo], avoids the difficulty that the evaluation 
points depend on k, but also requires special evaluation points for f(r). This method 
was found to be very effective in the example f(r) = e-’ considered in Table I; it was 
found to yield accuracy comparable to the N = 256 calculation using only 41 data 
points on the interval 0 < r < 25. It may be noted though that in a related calculation, 
to evaluate 

I‘ 

cc 

exp($p - ep) eitp dp = .Q$ + it), 
-* 

it was found to yield only about 5 figure accuracy using 41 data points on the interval 
-15 <p <3. 

The cutoff in the t integration at t m&K = Nd t/2 seems rather arbitrary and it might be 
though that the sharp cutoff would introduce some error and that the method could be 
improved by smoothing the cutoff. This was attempted by using the smoothing 
function 2(1 - cos ht)/(ht)2 where h = dp. This is not an arbitrary choice but is the 
factor that is obtained if a “lowest-order Filon’s” calculation is made for the Fourier 
transform in p. By lowest order we mean that the function to be transformed is fitted 
by linear segments and the Fourier transform calculated analytically. The result of 
this smoothing procedure was a remarkable loss of accuracy, to about 1 %. It appears 
that it is important to use the trapezoidal rule in the integrations and to cut off the t 
integration in the way which was done. 

It is not clear why this particular integration scheme is so effective, but two remarks 
may be of interest. The method that has been followed should be in principle exact 
for functions of the form 

h(r) = r-f+ia, (36) 

where CL = 2m/R, n = 0, Al,... &N/2, R = rmax - rmin . The Fourier sine transform 
off,(r) is 

g,(k) = 2nM(a)*k-*-ia. (37) 
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The orthogonality condition, 

47 

N-l 

c 
,+wkniJN = N, m = 0, fN, h2N ,..,, 

?I=” 
Z 0, otherwise, 

can be applied if the trapezoidal rule of integration is used and the result follows. The 
method should then of course also be exact for any linear combination of the function 
f,(r). The second remark also stems from the orthogonality property of Eq. (38) and is 
that the numerical transform is in principle its own inverse (apart from the factor 
7r/2) as is the exact sine transform. It has been confirmed numerically that the twice 
iterated sine transform is much more accurate than the single sine transform. 

The present method would probably not be suitable for functions f(r) which are 
themselves oscillatory. For example, it would not be reasonable to apply it to the case 
f(r) = J,(r) because of the linear increase of Ar which would obscure the oscillations. 
In this case, other methods would also run into difficulty. It is probably also not 
directly applicable to functions that are discontinuous or have discontinuous deriva- 
tives. In such a case an important feature of the Fourier transform is the long range 
oscillatory tail and this would be obscured by the linear increase of Ak. 

It has been pointed out to the author by J. W. Cooley that even more efficient 
methods than the FFT exist for carrying out numerical convolutions such as Eq. (2) 
using number theoretic transforms [13]. The effectiveness of such methods would 
probably be limited, however, because functions of the form sin(@) would be treated 
numerically and the rapid oscillation at large p values would apparently limit the 
accuracy obtainable. 

In conclusion, it is felt that the present method is attractive because it is simple to 
implement computationally, because it permits the use of the FFT, because it applies 
to functions given in tabular form and because it also applies to Bessel and spherical 
Bessel transforms. It is also invariant to changes in scale in the direct and transform 
variables, if the range of the p integration is chosen sufficiently liberally, which makes 
it valuable in atomic structure calculations. 
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